first commit

This commit is contained in:
2025-04-04 13:28:56 +03:00
commit 2adb419f83
89 changed files with 113532 additions and 0 deletions

10
.gitignore vendored Normal file
View File

@@ -0,0 +1,10 @@
# Python-generated files
__pycache__/
*.py[oc]
build/
dist/
wheels/
*.egg-info
# Virtual environments
.venv

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
.python-version Normal file
View File

@@ -0,0 +1 @@
3.10

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

0
README.md Normal file
View File

6
Untitled.ipynb Normal file
View File

@@ -0,0 +1,6 @@
{
"cells": [],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}

File diff suppressed because it is too large Load Diff

Binary file not shown.

File diff suppressed because it is too large Load Diff

1001
catboost_info/time_left.tsv Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

BIN
dt_depth_water_quality.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

2487
exampls.ipynb Normal file

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
knn_neighbors_impact.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

6
main.py Normal file
View File

@@ -0,0 +1,6 @@
def main():
print("Hello from jupyter!")
if __name__ == "__main__":
main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

BIN
model_comparison.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

View File

@@ -0,0 +1,11 @@
Модель,Тип данных,Точность на обучающей выборке,Точность на тестовой выборке,Средняя CV точность
K-ближайших соседей,Исходные данные,0.7072519083969465,0.5746951219512195,0.5530534351145038
K-ближайших соседей,Масштабированные данные,0.7599236641221374,0.6036585365853658,0.6248091603053435
Дерево решений,Исходные данные,1.0,0.5975609756097561,0.5820610687022901
Дерево решений,Масштабированные данные,1.0,0.5975609756097561,0.5820610687022901
Случайный лес,Исходные данные,1.0,0.6524390243902439,0.6637404580152672
Случайный лес,Масштабированные данные,1.0,0.6524390243902439,0.6637404580152672
CatBoost,Исходные данные,0.9950381679389313,0.6402439024390244,0.6633587786259543
CatBoost,Масштабированные данные,0.9969465648854962,0.635670731707317,0.6633587786259543
Нейронная сеть,Исходные данные,0.6110687022900764,0.6097560975609756,0.47748091603053433
Нейронная сеть,Масштабированные данные,0.6900763358778625,0.6707317073170732,0.6721374045801527
1 Модель Тип данных Точность на обучающей выборке Точность на тестовой выборке Средняя CV точность
2 K-ближайших соседей Исходные данные 0.7072519083969465 0.5746951219512195 0.5530534351145038
3 K-ближайших соседей Масштабированные данные 0.7599236641221374 0.6036585365853658 0.6248091603053435
4 Дерево решений Исходные данные 1.0 0.5975609756097561 0.5820610687022901
5 Дерево решений Масштабированные данные 1.0 0.5975609756097561 0.5820610687022901
6 Случайный лес Исходные данные 1.0 0.6524390243902439 0.6637404580152672
7 Случайный лес Масштабированные данные 1.0 0.6524390243902439 0.6637404580152672
8 CatBoost Исходные данные 0.9950381679389313 0.6402439024390244 0.6633587786259543
9 CatBoost Масштабированные данные 0.9969465648854962 0.635670731707317 0.6633587786259543
10 Нейронная сеть Исходные данные 0.6110687022900764 0.6097560975609756 0.47748091603053433
11 Нейронная сеть Масштабированные данные 0.6900763358778625 0.6707317073170732 0.6721374045801527

4325
my_jupyter.ipynb Normal file

File diff suppressed because one or more lines are too long

324
nohup.out Normal file
View File

@@ -0,0 +1,324 @@
[I 2025-03-31 22:30:46.888 ServerApp] jupyter_lsp | extension was successfully linked.
[I 2025-03-31 22:30:46.892 ServerApp] jupyter_server_terminals | extension was successfully linked.
[I 2025-03-31 22:30:46.896 ServerApp] jupyterlab | extension was successfully linked.
[I 2025-03-31 22:30:46.899 ServerApp] notebook | extension was successfully linked.
[I 2025-03-31 22:30:47.068 ServerApp] notebook_shim | extension was successfully linked.
[I 2025-03-31 22:30:47.082 ServerApp] notebook_shim | extension was successfully loaded.
[I 2025-03-31 22:30:47.084 ServerApp] jupyter_lsp | extension was successfully loaded.
[I 2025-03-31 22:30:47.084 ServerApp] jupyter_server_terminals | extension was successfully loaded.
[I 2025-03-31 22:30:47.085 LabApp] JupyterLab extension loaded from /home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/jupyterlab
[I 2025-03-31 22:30:47.086 LabApp] JupyterLab application directory is /home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/share/jupyter/lab
[I 2025-03-31 22:30:47.086 LabApp] Extension Manager is 'pypi'.
[I 2025-03-31 22:30:47.135 ServerApp] jupyterlab | extension was successfully loaded.
[I 2025-03-31 22:30:47.138 ServerApp] notebook | extension was successfully loaded.
[I 2025-03-31 22:30:47.139 ServerApp] Serving notebooks from local directory: /home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter
[I 2025-03-31 22:30:47.139 ServerApp] Jupyter Server 2.15.0 is running at:
[I 2025-03-31 22:30:47.139 ServerApp] http://localhost:8888/tree?token=0184223968a69c6b88d774fa06fd31ff3ad67ad3584066cd
[I 2025-03-31 22:30:47.139 ServerApp] http://127.0.0.1:8888/tree?token=0184223968a69c6b88d774fa06fd31ff3ad67ad3584066cd
[I 2025-03-31 22:30:47.139 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 2025-03-31 22:30:47.182 ServerApp]
To access the server, open this file in a browser:
file:///home/alter/.local/share/jupyter/runtime/jpserver-5524-open.html
Or copy and paste one of these URLs:
http://localhost:8888/tree?token=0184223968a69c6b88d774fa06fd31ff3ad67ad3584066cd
http://127.0.0.1:8888/tree?token=0184223968a69c6b88d774fa06fd31ff3ad67ad3584066cd
[I 2025-03-31 22:30:47.329 ServerApp] Skipped non-installed server(s): bash-language-server, dockerfile-language-server-nodejs, javascript-typescript-langserver, jedi-language-server, julia-language-server, pyright, python-language-server, python-lsp-server, r-languageserver, sql-language-server, texlab, typescript-language-server, unified-language-server, vscode-css-languageserver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, yaml-language-server
[I 2025-03-31 22:31:14.088 ServerApp] Kernel started: 92bd5f3b-8244-4669-b93b-464555e300e1
[I 2025-03-31 22:31:15.269 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-03-31 22:31:15.281 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-03-31 22:31:15.298 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-03-31 22:31:20.273 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-03-31 22:33:12.133 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 22:42:56.155 ServerApp] Kernel restarted: 92bd5f3b-8244-4669-b93b-464555e300e1
[I 2025-03-31 22:42:56.164 ServerApp] Starting buffering for 92bd5f3b-8244-4669-b93b-464555e300e1:733eaf09-eb54-44ef-bf4d-a9727957ab35
[I 2025-03-31 22:42:56.188 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-03-31 22:42:56.188 ServerApp] Restoring connection for 92bd5f3b-8244-4669-b93b-464555e300e1:733eaf09-eb54-44ef-bf4d-a9727957ab35
[I 2025-03-31 22:43:13.699 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 22:45:13.819 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 22:47:13.960 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 22:51:14.148 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 22:53:14.291 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 22:59:14.419 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:01:14.541 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:15:15.465 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:29:16.081 ServerApp] Saving file at /my_jupyter.ipynb
[W 2025-03-31 23:33:04.410 ServerApp] Notebook удалить.ipynb is not trusted
[I 2025-03-31 23:33:05.744 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[W 2025-03-31 23:33:05.977 ServerApp] Notebook удалить.ipynb is not trusted
[I 2025-03-31 23:33:06.659 ServerApp] Kernel started: 0fc97f5c-bd83-4e2f-b903-79581bd1f330
[I 2025-03-31 23:33:07.273 ServerApp] Connecting to kernel 0fc97f5c-bd83-4e2f-b903-79581bd1f330.
[I 2025-03-31 23:35:06.320 ServerApp] Saving file at /удалить.ipynb
[W 2025-03-31 23:35:06.321 ServerApp] Notebook удалить.ipynb is not trusted
[I 2025-03-31 23:37:17.037 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:39:17.324 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:41:17.596 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:49:18.879 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:51:19.071 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-03-31 23:59:19.214 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:01:19.352 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:05:19.505 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:07:20.075 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:11:20.229 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:31:20.374 ServerApp] Saving file at /my_jupyter.ipynb
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
[I 2025-04-01 00:33:20.782 ServerApp] Saving file at /my_jupyter.ipynb
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
[I 2025-04-01 00:35:21.761 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:37:21.939 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:38:27.496 ServerApp] Kernel interrupted: 92bd5f3b-8244-4669-b93b-464555e300e1
[I 2025-04-01 00:39:22.138 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:41:22.293 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 00:43:22.451 ServerApp] Saving file at /my_jupyter.ipynb
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.
warnings.warn(
[I 2025-04-01 01:11:23.070 ServerApp] Saving file at /my_jupyter.ipynb
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
/home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
warnings.warn(
[I 2025-04-01 01:13:23.661 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:15:24.197 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:17:24.343 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:19:24.471 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:21:24.726 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:23:24.905 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:25:25.030 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:41:25.171 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:51:25.318 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:53:25.465 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 01:55:25.683 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:03:27.383 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:07:27.515 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:09:27.639 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:13:27.775 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:17:27.899 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:21:20.895 ServerApp] Starting buffering for 92bd5f3b-8244-4669-b93b-464555e300e1:733eaf09-eb54-44ef-bf4d-a9727957ab35
[I 2025-04-01 02:21:28.269 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-04-01 02:21:28.275 ServerApp] Connecting to kernel 0fc97f5c-bd83-4e2f-b903-79581bd1f330.
[I 2025-04-01 02:21:28.491 ServerApp] Starting buffering for 92bd5f3b-8244-4669-b93b-464555e300e1:612ee316-f71c-4d49-ad66-fa81593000ab
[I 2025-04-01 02:21:33.365 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-04-01 02:21:33.372 ServerApp] Connecting to kernel 0fc97f5c-bd83-4e2f-b903-79581bd1f330.
[I 2025-04-01 02:21:33.827 ServerApp] Starting buffering for 92bd5f3b-8244-4669-b93b-464555e300e1:9e1fcd0f-3e28-4392-92de-9ef2453e14fd
[I 2025-04-01 02:21:34.434 ServerApp] Connecting to kernel 92bd5f3b-8244-4669-b93b-464555e300e1.
[I 2025-04-01 02:23:34.091 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:25:34.221 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:27:34.344 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:29:34.466 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:31:34.589 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:33:34.712 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:35:34.837 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:37:34.968 ServerApp] Saving file at /my_jupyter.ipynb
[I 2025-04-01 02:37:42.907 ServerApp] Starting buffering for 0fc97f5c-bd83-4e2f-b903-79581bd1f330:93bc9b6c-6ed0-4eca-84f3-9ad7e73156bb
[I 2025-04-01 02:37:44.354 ServerApp] Starting buffering for 92bd5f3b-8244-4669-b93b-464555e300e1:2f7c7715-a16f-45b2-a726-2842c4ac397a
[I 2025-04-01 02:54:18.691 ServerApp] jupyter_lsp | extension was successfully linked.
[I 2025-04-01 02:54:18.699 ServerApp] jupyter_server_terminals | extension was successfully linked.
[I 2025-04-01 02:54:18.705 ServerApp] jupyterlab | extension was successfully linked.
[I 2025-04-01 02:54:18.711 ServerApp] notebook | extension was successfully linked.
[I 2025-04-01 02:54:19.062 ServerApp] notebook_shim | extension was successfully linked.
[I 2025-04-01 02:54:19.091 ServerApp] notebook_shim | extension was successfully loaded.
[I 2025-04-01 02:54:19.095 ServerApp] jupyter_lsp | extension was successfully loaded.
[I 2025-04-01 02:54:19.096 ServerApp] jupyter_server_terminals | extension was successfully loaded.
[I 2025-04-01 02:54:19.098 LabApp] JupyterLab extension loaded from /home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/lib/python3.10/site-packages/jupyterlab
[I 2025-04-01 02:54:19.098 LabApp] JupyterLab application directory is /home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/.venv/share/jupyter/lab
[I 2025-04-01 02:54:19.098 LabApp] Extension Manager is 'pypi'.
[I 2025-04-01 02:54:19.160 ServerApp] jupyterlab | extension was successfully loaded.
[I 2025-04-01 02:54:19.165 ServerApp] notebook | extension was successfully loaded.
[I 2025-04-01 02:54:19.166 ServerApp] The port 8888 is already in use, trying another port.
[I 2025-04-01 02:54:19.168 ServerApp] Serving notebooks from local directory: /home/alter/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter
[I 2025-04-01 02:54:19.168 ServerApp] Jupyter Server 2.15.0 is running at:
[I 2025-04-01 02:54:19.168 ServerApp] http://localhost:8889/tree?token=d0c8eb337034c95ca5689d018ebf971cb1af49dd10ec85d9
[I 2025-04-01 02:54:19.168 ServerApp] http://127.0.0.1:8889/tree?token=d0c8eb337034c95ca5689d018ebf971cb1af49dd10ec85d9
[I 2025-04-01 02:54:19.168 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 2025-04-01 02:54:19.227 ServerApp]
To access the server, open this file in a browser:
file:///home/alter/.local/share/jupyter/runtime/jpserver-34532-open.html
Or copy and paste one of these URLs:
http://localhost:8889/tree?token=d0c8eb337034c95ca5689d018ebf971cb1af49dd10ec85d9
http://127.0.0.1:8889/tree?token=d0c8eb337034c95ca5689d018ebf971cb1af49dd10ec85d9
[I 2025-04-01 02:54:19.461 ServerApp] Skipped non-installed server(s): bash-language-server, dockerfile-language-server-nodejs, javascript-typescript-langserver, jedi-language-server, julia-language-server, pyright, python-language-server, python-lsp-server, r-languageserver, sql-language-server, texlab, typescript-language-server, unified-language-server, vscode-css-languageserver-bin, vscode-html-languageserver-bin, vscode-json-languageserver-bin, yaml-language-server
[I 2025-04-01 02:54:31.345 ServerApp] Kernel started: c933d6d2-b391-45c6-b273-d48f09d86e3f
[I 2025-04-01 02:54:32.556 ServerApp] Connecting to kernel c933d6d2-b391-45c6-b273-d48f09d86e3f.
[I 2025-04-01 02:54:32.571 ServerApp] Connecting to kernel c933d6d2-b391-45c6-b273-d48f09d86e3f.
[I 2025-04-01 02:54:32.594 ServerApp] Connecting to kernel c933d6d2-b391-45c6-b273-d48f09d86e3f.
[I 2025-04-01 02:54:35.122 ServerApp] Connecting to kernel c933d6d2-b391-45c6-b273-d48f09d86e3f.
[I 2025-04-01 02:56:30.509 ServerApp] Saving file at /my_jupyter.ipynb
[W 2025-04-01 03:16:43.805 ServerApp] Notebook удалить.ipynb is not trusted
[I 2025-04-01 03:16:45.177 ServerApp] Connecting to kernel c933d6d2-b391-45c6-b273-d48f09d86e3f.
[W 2025-04-01 03:16:45.425 ServerApp] Notebook удалить.ipynb is not trusted
[I 2025-04-01 03:16:46.128 ServerApp] Kernel started: 31d56a7a-1d9c-4878-b342-13dfda150fe5
[I 2025-04-01 03:16:46.818 ServerApp] Connecting to kernel 31d56a7a-1d9c-4878-b342-13dfda150fe5.
[C 2025-04-01 03:40:42.800 ServerApp] received signal 15, stopping
[I 2025-04-01 03:40:42.806 ServerApp] Shutting down 5 extensions
[I 2025-04-01 03:40:42.807 ServerApp] Shutting down 2 kernels
[C 2025-04-01 03:40:42.809 ServerApp] received signal 15, stopping
[I 2025-04-01 03:40:42.812 ServerApp] Kernel shutdown: 92bd5f3b-8244-4669-b93b-464555e300e1
[I 2025-04-01 03:40:42.813 ServerApp] Kernel shutdown: 0fc97f5c-bd83-4e2f-b903-79581bd1f330
[I 2025-04-01 03:40:42.816 ServerApp] Shutting down 5 extensions
[I 2025-04-01 03:40:42.817 ServerApp] Shutting down 2 kernels
[I 2025-04-01 03:40:42.818 ServerApp] Kernel shutdown: 92bd5f3b-8244-4669-b93b-464555e300e1
[I 2025-04-01 03:40:42.818 ServerApp] Kernel shutdown: 0fc97f5c-bd83-4e2f-b903-79581bd1f330
[C 2025-04-01 03:40:42.865 ServerApp] received signal 15, stopping
[I 2025-04-01 03:40:42.866 ServerApp] Shutting down 5 extensions
[C 2025-04-01 03:40:42.896 ServerApp] received signal 15, stopping
[I 2025-04-01 03:40:42.910 ServerApp] Shutting down 5 extensions
[I 2025-04-01 03:40:42.918 ServerApp] Shutting down 2 kernels
[I 2025-04-01 03:40:42.928 ServerApp] Kernel shutdown: 31d56a7a-1d9c-4878-b342-13dfda150fe5
[I 2025-04-01 03:40:42.932 ServerApp] Kernel shutdown: c933d6d2-b391-45c6-b273-d48f09d86e3f
[I 2025-04-01 03:40:42.934 ServerApp] Shutting down 2 kernels
[I 2025-04-01 03:40:42.950 ServerApp] Kernel shutdown: 31d56a7a-1d9c-4878-b342-13dfda150fe5
[I 2025-04-01 03:40:42.950 ServerApp] Kernel shutdown: c933d6d2-b391-45c6-b273-d48f09d86e3f
[I 2025-04-01 03:40:43.025 ServerApp] Starting buffering for 31d56a7a-1d9c-4878-b342-13dfda150fe5:fc9ef943-d646-4e3c-9901-b05193dff84f

14
pyproject.toml Normal file
View File

@@ -0,0 +1,14 @@
[project]
name = "jupyter"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.10"
dependencies = [
"catboost>=1.2.7",
"matplotlib>=3.10.1",
"notebook>=7.3.3",
"pandas>=2.2.3",
"scikit-learn>=1.6.1",
"seaborn>=0.13.2",
]

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

3882
test0.ipynb Normal file

File diff suppressed because one or more lines are too long

3970
test1.ipynb Normal file

File diff suppressed because one or more lines are too long

2998
test2.ipynb Normal file

File diff suppressed because one or more lines are too long

2235
uv.lock generated Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

3277
water_potability.csv Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

8144
Архив/datatraining.txt Normal file

File diff suppressed because it is too large Load Diff

BIN
Архив/hh.csv Normal file

Binary file not shown.
Can't render this file because it is too large.

888
андрюха1.ipynb Normal file
View File

@@ -0,0 +1,888 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Лабораторная работа 1\n",
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: 'C:\\\\Users\\\\Cyber\\\\Downloads\\\\daily-weather-dataset_chronological-order.xlsx'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_excel\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mr\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mC:\u001b[39;49m\u001b[38;5;124;43m\\\u001b[39;49m\u001b[38;5;124;43mUsers\u001b[39;49m\u001b[38;5;124;43m\\\u001b[39;49m\u001b[38;5;124;43mCyber\u001b[39;49m\u001b[38;5;124;43m\\\u001b[39;49m\u001b[38;5;124;43mDownloads\u001b[39;49m\u001b[38;5;124;43m\\\u001b[39;49m\u001b[38;5;124;43mdaily-weather-dataset_chronological-order.xlsx\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msheet_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mdaily\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/venv/lib/python3.13/site-packages/pandas/io/excel/_base.py:495\u001b[0m, in \u001b[0;36mread_excel\u001b[0;34m(io, sheet_name, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, parse_dates, date_parser, date_format, thousands, decimal, comment, skipfooter, storage_options, dtype_backend, engine_kwargs)\u001b[0m\n\u001b[1;32m 493\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(io, ExcelFile):\n\u001b[1;32m 494\u001b[0m should_close \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 495\u001b[0m io \u001b[38;5;241m=\u001b[39m \u001b[43mExcelFile\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 496\u001b[0m \u001b[43m \u001b[49m\u001b[43mio\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 497\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 498\u001b[0m \u001b[43m \u001b[49m\u001b[43mengine\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 499\u001b[0m \u001b[43m \u001b[49m\u001b[43mengine_kwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mengine_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 500\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 501\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m engine \u001b[38;5;129;01mand\u001b[39;00m engine \u001b[38;5;241m!=\u001b[39m io\u001b[38;5;241m.\u001b[39mengine:\n\u001b[1;32m 502\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 503\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEngine should not be specified when passing \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 504\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124man ExcelFile - ExcelFile already has the engine set\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 505\u001b[0m )\n",
"File \u001b[0;32m~/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/venv/lib/python3.13/site-packages/pandas/io/excel/_base.py:1550\u001b[0m, in \u001b[0;36mExcelFile.__init__\u001b[0;34m(self, path_or_buffer, engine, storage_options, engine_kwargs)\u001b[0m\n\u001b[1;32m 1548\u001b[0m ext \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxls\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1549\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1550\u001b[0m ext \u001b[38;5;241m=\u001b[39m \u001b[43minspect_excel_format\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1551\u001b[0m \u001b[43m \u001b[49m\u001b[43mcontent_or_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\n\u001b[1;32m 1552\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1553\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ext \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1554\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 1555\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExcel file format cannot be determined, you must specify \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1556\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124man engine manually.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1557\u001b[0m )\n",
"File \u001b[0;32m~/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/venv/lib/python3.13/site-packages/pandas/io/excel/_base.py:1402\u001b[0m, in \u001b[0;36minspect_excel_format\u001b[0;34m(content_or_path, storage_options)\u001b[0m\n\u001b[1;32m 1399\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(content_or_path, \u001b[38;5;28mbytes\u001b[39m):\n\u001b[1;32m 1400\u001b[0m content_or_path \u001b[38;5;241m=\u001b[39m BytesIO(content_or_path)\n\u001b[0;32m-> 1402\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1403\u001b[0m \u001b[43m \u001b[49m\u001b[43mcontent_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\n\u001b[1;32m 1404\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m handle:\n\u001b[1;32m 1405\u001b[0m stream \u001b[38;5;241m=\u001b[39m handle\u001b[38;5;241m.\u001b[39mhandle\n\u001b[1;32m 1406\u001b[0m stream\u001b[38;5;241m.\u001b[39mseek(\u001b[38;5;241m0\u001b[39m)\n",
"File \u001b[0;32m~/Nextcloud/#Учёба/институт/#4 Курс/Системы искусственного интеллекта/Jupyter/venv/lib/python3.13/site-packages/pandas/io/common.py:882\u001b[0m, in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 873\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(\n\u001b[1;32m 874\u001b[0m handle,\n\u001b[1;32m 875\u001b[0m ioargs\u001b[38;5;241m.\u001b[39mmode,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 878\u001b[0m newline\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 879\u001b[0m )\n\u001b[1;32m 880\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 881\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[0;32m--> 882\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 883\u001b[0m handles\u001b[38;5;241m.\u001b[39mappend(handle)\n\u001b[1;32m 885\u001b[0m \u001b[38;5;66;03m# Convert BytesIO or file objects passed with an encoding\u001b[39;00m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'C:\\\\Users\\\\Cyber\\\\Downloads\\\\daily-weather-dataset_chronological-order.xlsx'"
]
}
],
"source": [
"data = pd.read_excel(r\"C:\\Users\\Cyber\\Downloads\\daily-weather-dataset_chronological-order.xlsx\", sheet_name=\"daily\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.tail()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.shape # Параметр .shape показывает размерность датафрейма"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.size # Параметр .size показывает количество элементов в датафрейме"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.count() # Метод count считает сколько всего непустых записей в каждом столбце"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.info() # Метод .info() показывает тип каждого столбца и занимаемую память"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.dtypes # Параметр .dtypes показывает просто тип каждого столбца"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.isna().head() # Метод .isna() вместо каждого значения подставит True (значение NaN) или False (действительное значение)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data.isna().sum() # Подсчитаем количество пропусков в каждом столбце с помощью метода .sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"proc = data.isna().sum().sum() # Подсчитаем сколько всего пропусков (во всех столбцах) в нашем датафрейме\n",
"print(proc) # Отобразим количество посчитанных пропусков"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"proc = data.isna().sum().sum() / data.size\n",
"print(round(100*proc,1), '%', sep='')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(data)\n",
"# Функция для удаления выбросов по IQR\n",
"def remove_outliers(df, column):\n",
" Q1 = df[column].quantile(0.25)\n",
" Q3 = df[column].quantile(0.75)\n",
" IQR = Q3 - Q1\n",
" lower_bound = Q1 - 1.5 * IQR\n",
" upper_bound = Q3 + 1.5 * IQR\n",
" return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]\n",
"\n",
"# Удаляем выбросы из указанных столбцов\n",
"columns_to_clean = [\"Cloud coverage\"]\n",
"for col in columns_to_clean:\n",
" df = remove_outliers(df, col)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = df.dropna(axis=1, how='all')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#3 Для прогнозирования солнечной генерации применена группировка по месяцу и времени года чтобы учитывать сезонность выработки.\n",
"df[\"Date\"] = pd.to_datetime(df[\"Date\"]) # Преобразуем столбец 'Date' в формат datetime\n",
"df[\"Month\"] = df[\"Date\"].dt.month # Добавляем столбец 'Month' для группировки по месяцам\n",
"df_monthly = df.groupby(\"Month\").mean() # Группируем по месяцу и вычисляем средние значения\n",
"df_monthly"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#5\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 5.1 \n",
"# Выбираем числовые столбцы, исключая \"Month\"\n",
"numeric_features = df.select_dtypes(include=[\"number\"]).columns\n",
"numeric_features = numeric_features.drop(\"Month\") # Убираем \"Month\"\n",
"\n",
"# Строим графики для всех числовых признаков (кроме \"Month\")\n",
"for col in numeric_features:\n",
" plt.figure(figsize=(14, 4))\n",
"\n",
" # График плотности (KDE)\n",
" plt.subplot(121)\n",
" sns.kdeplot(data=df, x=col)\n",
" plt.title(f\"Распределение: {col}\")\n",
"\n",
" # Boxplot (ящик с усами)\n",
" plt.subplot(122)\n",
" sns.boxplot(data=df, x=col)\n",
" plt.title(f\"Boxplot: {col}\")\n",
"\n",
" plt.show()\n",
"\n",
"#plt.figure(figsize=(8, 5))\n",
"#sns.histplot(df['Visibility'], bins=20, kde=True)\n",
"#plt.title(\"Гистограмма распределения параметра видимости\")\n",
"#plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 5.3. Матрица корреляции\n",
"# Позволяет увидеть, как связаны между собой числовые переменные и для поиска зависимостей между погодными параметрами\n",
"# Чем ближе значение к 1 или -1, тем сильнее положительная или отрицательная корреляция\n",
"plt.figure(figsize=(8, 5))\n",
"sns.heatmap(df_monthly.corr(), annot=True, cmap='coolwarm', fmt=\".2f\")\n",
"plt.title(\"Матрица корреляции погодных параметров\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 5.4. Диаграмма рассеяния облачности и солнечной энергии\n",
"# Показывает взаимосвязь между облачностью и уровнем солнечной энергии.\n",
"plt.figure(figsize=(8, 5))\n",
"sns.scatterplot(x=df['Cloud coverage'], y=df['Solar energy'])\n",
"plt.title(\"Диаграмма рассеяния: Облачность vs Солнечная энергия\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 5.5. Среднее значение облачности по месяцам\n",
"#Позволяет проанализировать сезонные тренды облачности.\n",
"#Позволяет быстро увидеть, в какие месяцы облачность выше или ниже.\n",
"plt.figure(figsize=(8, 5))\n",
"sns.barplot(x=df['Month'], y=df['Cloud coverage'], estimator=sum)\n",
"plt.title(\"Среднее значение облачности по месяцам\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.feature_selection import VarianceThreshold\n",
"\n",
"# Оставляем только числовые признаки\n",
"numeric_features = df.select_dtypes(include=[\"number\"])\n",
"\n",
"# Удаляем признаки с дисперсией ниже 0.01\n",
"selector = VarianceThreshold(threshold=0.01)\n",
"df_var = selector.fit_transform(numeric_features)\n",
"\n",
"# Получаем оставшиеся названия признаков\n",
"selected_features = numeric_features.columns[selector.get_support()]\n",
"df_selected = df[selected_features]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.feature_selection import SelectKBest, f_regression\n",
"\n",
"# Убираем столбец с датами и выбираем только числовые признаки\n",
"X = df.select_dtypes(include=[\"number\"]).drop(columns=[\"Solar energy\"]) \n",
"y = df[\"Solar energy\"] # Целевая переменная\n",
"\n",
"# Отбор 5 лучших признаков\n",
"selector = SelectKBest(score_func=f_regression, k=5)\n",
"X_new = selector.fit_transform(X, y)\n",
"\n",
"# Выводим выбранные признаки\n",
"selected_features = X.columns[selector.get_support()]\n",
"print(\"Выбранные признаки:\", selected_features)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.feature_selection import RFE\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"model = LinearRegression()\n",
"rfe = RFE(model, n_features_to_select=5)\n",
"X_rfe = rfe.fit_transform(X, y)\n",
"\n",
"selected_features = X.columns[rfe.support_]\n",
"print(\"Новые лучшие признаки:\", selected_features)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[\"Temp_Cloud\"] = df[\"Temperature\"] * df[\"Cloud coverage\"]\n",
"print(\"\\nDataFrame с добавленным признаком 'Temp_Cloud':\")\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 7\n",
"plt.figure(figsize=(8, 5))\n",
"sns.histplot(df[\"Solar energy\"], bins=30, kde=True)\n",
"plt.title(\"Распределение целевой переменной (Solar Energy)\")\n",
"plt.xlabel(\"Solar Energy\")\n",
"plt.ylabel(\"Частота\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12, 6))\n",
"sns.boxplot(x=df[\"Month\"], y=df[\"Solar energy\"])\n",
"plt.title(\"Распределение Solar Energy по месяцам\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#8\n",
"from sklearn.model_selection import train_test_split\n",
"df = df.drop(columns=[\"Date\"])\n",
"df = df.drop(columns=[\"Month\"])\n",
"y = df[\"Solar energy\"]\n",
"# Удалим целевую переменную\n",
"X = df.drop(columns=[\"Solar energy\"])\n",
"\n",
"\n",
"# Разбиение (80% train, 20% test)\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"# Вывод размеров получившихся выборок\n",
"print(f\"Размер X_train: {X_train.shape}\")\n",
"print(f\"Размер X_test: {X_test.shape}\")\n",
"print(f\"Размер y_train: {y_train.shape}\")\n",
"print(f\"Размер y_test: {y_test.shape}\")\n",
"print(\"Обучающая выборка X:\")\n",
"print(X_train)\n",
"print(\"\\nТестовая выборка X:\")\n",
"print(X_test)\n",
"print(\"\\nОбучающая выборка y:\")\n",
"print(y_train)\n",
"print(\"\\nТестовая выборка y:\")\n",
"print(y_test)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Лабораторная работа 2\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
"\n",
"# Модели машинного обучения\n",
"from sklearn.neighbors import KNeighborsRegressor\n",
"from sklearn.tree import DecisionTreeRegressor\n",
"from sklearn.ensemble import RandomForestRegressor\n",
"from catboost import CatBoostRegressor\n",
"from tensorflow import keras\n",
"from tensorflow.keras import layers\n",
"from tensorflow.keras.callbacks import EarlyStopping\n",
"from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, KFold\n",
"from sklearn.neural_network import MLPRegressor\n",
"cv = KFold(n_splits=5, shuffle=True, random_state=42)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_test = scaler.transform(X_test)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Knn\n",
"knn_params = {\n",
" 'n_neighbors': [3, 5, 7, 9],\n",
" 'weights': ['uniform', 'distance'],\n",
" 'metric': ['euclidean', 'manhattan']\n",
"}\n",
"knn_grid = GridSearchCV(KNeighborsRegressor(), knn_params, cv=cv, scoring='r2', n_jobs=-1)\n",
"knn_grid.fit(X_train, y_train)\n",
"print(\"Best KNN:\", knn_grid.best_params_, \"Best R²:\", knn_grid.best_score_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Дерево решений\n",
"dt_params = {\n",
" 'max_depth': [3, 5, 10, 15],\n",
" 'min_samples_split': [2, 5, 10],\n",
" 'min_samples_leaf': [1, 2, 5]\n",
"}\n",
"dt_grid = GridSearchCV(DecisionTreeRegressor(random_state=42), dt_params, cv=cv, scoring='r2', n_jobs=-1)\n",
"dt_grid.fit(X_train, y_train)\n",
"print(\"Best Decision Tree:\", dt_grid.best_params_, \"Best R²:\", dt_grid.best_score_)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Случайный лес\n",
"rf_params = {\n",
" 'n_estimators': [100, 200, 300],\n",
" 'max_depth': [5, 10, 15],\n",
" 'min_samples_split': [2, 5, 10]\n",
"}\n",
"rf_grid = GridSearchCV(RandomForestRegressor(random_state=42), rf_params, cv=cv, scoring='r2', n_jobs=-1)\n",
"rf_grid.fit(X_train, y_train)\n",
"print(\"Best Random Forest:\", rf_grid.best_params_, \"Best R²:\", rf_grid.best_score_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Градиентный бустинг\n",
"cat_params = {\n",
" 'iterations': [100, 500, 1000],\n",
" 'learning_rate': [0.01, 0.05, 0.1],\n",
" 'depth': [4, 6, 8]\n",
"}\n",
"cat_grid = RandomizedSearchCV(CatBoostRegressor(verbose=0, random_state=42), cat_params, cv=cv, scoring='r2', n_jobs=-1, n_iter=10)\n",
"cat_grid.fit(X_train, y_train)\n",
"print(\"Best CatBoost:\", cat_grid.best_params_, \"Best R²:\", cat_grid.best_score_)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Нейронная сеть\n",
"mlp_params = {\n",
" 'hidden_layer_sizes': [(50,), (100,), (50, 50)],\n",
" 'activation': ['relu', 'tanh'],\n",
" 'alpha': [0.0001, 0.001, 0.01]\n",
"}\n",
"mlp_grid = RandomizedSearchCV(MLPRegressor(max_iter=5500, random_state=42), mlp_params, cv=cv, scoring='r2', n_jobs=-1, n_iter=10)\n",
"mlp_grid.fit(X_train, y_train)\n",
"print(\"Best MLP:\", mlp_grid.best_params_, \"Best R²:\", mlp_grid.best_score_)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Сравнение моделей\n",
"models = [\"KNN\", \"Decision Tree\", \"Random Forest\", \"CatBoost\", \"Neural Network\"]\n",
"scores = [\n",
" knn_grid.best_score_,\n",
" dt_grid.best_score_,\n",
" rf_grid.best_score_,\n",
" cat_grid.best_score_,\n",
" mlp_grid.best_score_\n",
"]\n",
"\n",
"plt.figure(figsize=(10, 5))\n",
"sns.barplot(x=models, y=scores)\n",
"plt.ylabel(\"R2 Score\")\n",
"plt.title(\"Сравнение моделей машинного обучения\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Лабораторная работа №3 - Оценка моделей\n",
"knn_best = knn_grid.best_estimator_\n",
"dt_best = dt_grid.best_estimator_\n",
"rf_best = rf_grid.best_estimator_\n",
"cat_best = cat_grid.best_estimator_\n",
"mlp_best = mlp_grid.best_estimator_\n",
"def evaluate_model(model, X_test, y_test):\n",
" y_pred = model.predict(X_test)\n",
" mae = mean_absolute_error(y_test, y_pred)\n",
" mse = mean_squared_error(y_test, y_pred)\n",
" rmse = np.sqrt(mse)\n",
" mape = np.mean(np.abs((y_test - y_pred) / y_test)) * 100\n",
" r2 = r2_score(y_test, y_pred)\n",
" return {'MAE': mae, 'MSE': mse, 'RMSE': rmse, 'MAPE': mape, 'R2': r2}\n",
"\n",
"models = {'KNN': knn_best, 'Decision Tree': dt_best, 'Random Forest': rf_best, 'CatBoost': cat_best, 'MLP': mlp_best}\n",
"\n",
"for name, model in models.items():\n",
" results = evaluate_model(model, X_test, y_test)\n",
" print(f\"{name} Evaluation: {results}\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Визуализация результатов\n",
"# Словарь для хранения результатов\n",
"metrics = {'Model': [], 'MAE': [], 'MSE': [], 'RMSE': [], 'MAPE': [], 'R2': []}\n",
"\n",
"# Оценка каждой модели\n",
"for name, model in models.items():\n",
" results = evaluate_model(model, X_test, y_test)\n",
" metrics['Model'].append(name)\n",
" for key in results:\n",
" metrics[key].append(results[key])\n",
"\n",
"# Преобразование в DataFrame\n",
"metrics_df = pd.DataFrame(metrics)\n",
"metrics_df.set_index('Model', inplace=True)\n",
"\n",
"# Названия метрик и их описания для графиков\n",
"metric_labels = {\n",
" 'MAE': 'Средняя абсолютная ошибка (MAE)',\n",
" 'MSE': 'Среднеквадратическая ошибка (MSE)',\n",
" 'RMSE': 'Корень из MSE (RMSE)',\n",
" 'MAPE': 'Средняя абсолютная процентная ошибка (MAPE)',\n",
" 'R2': 'Коэффициент детерминации (R²)'\n",
"}\n",
"\n",
"# Отображение каждого графика отдельно\n",
"for metric in metrics_df.columns:\n",
" plt.figure(figsize=(8, 5))\n",
" sns.barplot(\n",
" x=metrics_df.index, \n",
" y=metrics_df[metric], \n",
" hue=metrics_df.index, # Добавляем hue\n",
" palette='viridis', \n",
" edgecolor='black',\n",
" legend=False # Отключаем легенду, так как цвета соответствуют x\n",
" )\n",
" plt.title(f'Сравнение моделей по {metric_labels[metric]}', fontsize=14)\n",
" plt.xlabel(\"Модель\", fontsize=12)\n",
" plt.ylabel(metric_labels[metric], fontsize=12)\n",
" plt.xticks(rotation=45)\n",
" plt.grid(axis='y', linestyle='--', alpha=0.7)\n",
" plt.show()\n",
"\n",
"\n",
"# Визуализация фактических vs предсказанных значений для лучшей модели (по R²)\n",
"best_model_name = metrics_df.sort_values(by='R2', ascending=False).index[0]\n",
"best_model = models[best_model_name]\n",
"\n",
"y_pred_best = best_model.predict(X_test)\n",
"\n",
"plt.figure(figsize=(8, 8))\n",
"sns.scatterplot(x=y_test, y=y_pred_best, alpha=0.6)\n",
"plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--r', label=\"Идеальное предсказание\")\n",
"plt.xlabel(\"Фактические значения\", fontsize=12)\n",
"plt.ylabel(\"Предсказанные значения\", fontsize=12)\n",
"plt.title(f\"Фактические vs. Предсказанные ({best_model_name})\", fontsize=14)\n",
"plt.legend()\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Лабораторная работа №4\n",
"df = df.drop(columns=[\"Altimeter\"])\n",
"df = df.drop(columns=[\"Temp_Cloud\"])\n",
"y = df[\"Solar energy\"]\n",
"X = df.drop(columns=[\"Solar energy\"])\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_test = scaler.transform(X_test)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Knn\n",
"\n",
"knn_params = {\n",
"\n",
" 'n_neighbors': [3, 5, 7, 9],\n",
"\n",
" 'weights': ['uniform', 'distance'],\n",
"\n",
" 'metric': ['euclidean', 'manhattan']\n",
"\n",
"}\n",
"\n",
"knn_grid = GridSearchCV(KNeighborsRegressor(), knn_params, cv=cv, scoring='r2', n_jobs=-1)\n",
"\n",
"knn_grid.fit(X_train, y_train)\n",
"\n",
"print(\"Best KNN:\", knn_grid.best_params_, \"Best R²:\", knn_grid.best_score_)\n",
"\n",
"# Дерево решений\n",
"\n",
"dt_params = {\n",
"\n",
" 'max_depth': [3, 5, 10, 15],\n",
"\n",
" 'min_samples_split': [2, 5, 10],\n",
"\n",
" 'min_samples_leaf': [1, 2, 5]\n",
"\n",
"}\n",
"\n",
"dt_grid = GridSearchCV(DecisionTreeRegressor(random_state=42), dt_params, cv=cv, scoring='r2', n_jobs=-1)\n",
"\n",
"dt_grid.fit(X_train, y_train)\n",
"\n",
"print(\"Best Decision Tree:\", dt_grid.best_params_, \"Best R²:\", dt_grid.best_score_)\n",
"\n",
"# Случайный лес\n",
"\n",
"rf_params = {\n",
"\n",
" 'n_estimators': [100, 200, 300],\n",
"\n",
" 'max_depth': [5, 10, 15],\n",
"\n",
" 'min_samples_split': [2, 5, 10]\n",
"\n",
"}\n",
"\n",
"rf_grid = GridSearchCV(RandomForestRegressor(random_state=42), rf_params, cv=cv, scoring='r2', n_jobs=-1)\n",
"\n",
"rf_grid.fit(X_train, y_train)\n",
"\n",
"print(\"Best Random Forest:\", rf_grid.best_params_, \"Best R²:\", rf_grid.best_score_)\n",
"\n",
"# Градиентный бустинг\n",
"\n",
"cat_params = {\n",
"\n",
" 'iterations': [100, 500, 1000],\n",
"\n",
" 'learning_rate': [0.01, 0.05, 0.1],\n",
"\n",
" 'depth': [4, 6, 8]\n",
"\n",
"}\n",
"\n",
"cat_grid = RandomizedSearchCV(CatBoostRegressor(verbose=0, random_state=42), cat_params, cv=cv, scoring='r2', n_jobs=-1, n_iter=10)\n",
"\n",
"cat_grid.fit(X_train, y_train)\n",
"\n",
"print(\"Best CatBoost:\", cat_grid.best_params_, \"Best R²:\", cat_grid.best_score_)\n",
"\n",
"# Нейронная сеть\n",
"\n",
"mlp_params = {\n",
"\n",
" 'hidden_layer_sizes': [(50,), (100,), (50, 50)],\n",
"\n",
" 'activation': ['relu', 'tanh'],\n",
"\n",
" 'alpha': [0.0001, 0.001, 0.01]\n",
"\n",
"}\n",
"\n",
"mlp_grid = RandomizedSearchCV(MLPRegressor(max_iter=5500, random_state=42), mlp_params, cv=cv, scoring='r2', n_jobs=-1, n_iter=10)\n",
"\n",
"mlp_grid.fit(X_train, y_train)\n",
"\n",
"print(\"Best MLP:\", mlp_grid.best_params_, \"Best R²:\", mlp_grid.best_score_)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"knn_best = knn_grid.best_estimator_\n",
"dt_best = dt_grid.best_estimator_\n",
"rf_best = rf_grid.best_estimator_\n",
"cat_best = cat_grid.best_estimator_\n",
"mlp_best = mlp_grid.best_estimator_\n",
"def evaluate_model(model, X_test, y_test):\n",
" y_pred = model.predict(X_test)\n",
" mae = mean_absolute_error(y_test, y_pred)\n",
" mse = mean_squared_error(y_test, y_pred)\n",
" rmse = np.sqrt(mse)\n",
" mape = np.mean(np.abs((y_test - y_pred) / y_test)) * 100\n",
" r2 = r2_score(y_test, y_pred)\n",
" return {'MAE': mae, 'MSE': mse, 'RMSE': rmse, 'MAPE': mape, 'R2': r2}\n",
"\n",
"models = {'KNN': knn_best, 'Decision Tree': dt_best, 'Random Forest': rf_best, 'CatBoost': cat_best, 'MLP': mlp_best}\n",
"\n",
"for name, model in models.items():\n",
" results = evaluate_model(model, X_test, y_test)\n",
" print(f\"{name} Evaluation: {results}\")\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Список моделей и их названий\n",
"models = {\n",
" \"KNN\": knn_best,\n",
" \"Decision Tree\": dt_best,\n",
" \"Random Forest\": rf_best,\n",
" \"CatBoost\": cat_best,\n",
" \"MLP\": mlp_best\n",
"}\n",
"\n",
"# Создаем DataFrame для предсказанных значений\n",
"predictions_df = pd.DataFrame({\"Actual\": y_test})\n",
"\n",
"# Генерируем предсказания для каждой модели\n",
"for name, model in models.items():\n",
" predictions_df[name] = model.predict(X_test)\n",
"\n",
"# Выводим первые 10 строк предсказаний\n",
"print(predictions_df.head(10))\n",
"\n",
"# Визуализация предсказаний\n",
"plt.figure(figsize=(12, 6))\n",
"plt.plot(predictions_df[\"Actual\"].values, label=\"Actual\", color=\"black\", linewidth=2)\n",
"\n",
"for name in models.keys():\n",
" plt.plot(predictions_df[name].values, label=name, linestyle=\"--\")\n",
"\n",
"plt.legend()\n",
"plt.title(\"Actual vs Predicted Values\")\n",
"plt.xlabel(\"Samples\")\n",
"plt.ylabel(\"Solar Energy Output\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"# Список моделей и их названий\n",
"models = {\n",
" \"KNN\": knn_best,\n",
" \"Decision_Tree\": dt_best,\n",
" \"Random_Forest\": rf_best,\n",
" \"CatBoost\": cat_best,\n",
" \"MLP\": mlp_best\n",
"}\n",
"\n",
"# Сохраняем каждую модель в файл .pkl\n",
"for name, model in models.items():\n",
" with open(f\"{name}.pkl\", \"wb\") as file:\n",
" pickle.dump(model, file)\n",
"\n",
"print(\"Все модели сохранены в формате .pkl!\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

2817
удалить.ipynb Normal file

File diff suppressed because one or more lines are too long